Effects of natural organic matter type and concentration on the aggregation of citrate-stabilized gold nanoparticles.

نویسندگان

  • Jeffrey A Nason
  • Shannon A McDowell
  • Ty W Callahan
چکیده

The aggregation of 12 nm citrate-stabilized gold nanoparticles (cit-AuNPs) in the presence of four different natural organic matter (NOM) isolates and a monovalent electrolyte (KCl) was evaluated using time-resolved dynamic light scattering. All four NOM isolates stabilized the cit-AuNPs with respect to aggregation. However, specific effects varied among the different NOM isolates. At pH = 6 in 80 mM KCl, low concentrations (<0.25 mg C per L) of large molecular weight Suwannee River Humic Acid (SRHA) was required to stabilize cit-AuNPs, while larger concentrations (>2 mg C per L) of smaller Suwannee River Fulvic Acid (SRFA) were necessary at the same ionic strength. Suwannee River NOM (SRNOM) which contains both SRHA and SRFA behaved in a manner intermediate between the two. Pony Lake Fulvic Acid (PLFA), an autochthonous NOM isolate, provided substantial stability at low concentrations, yet aggregation was induced at NOM concentrations > 2 mg C per L, a trend that is hypothesized to be the result of favourable hydrophobic interactions between coated particles induced at increased surface coverage. For all NOM isolates, it appears that NOM adsorption or conformational changes at the AuNP surfaces result in significant increases in the hydrodynamic diameter that aren't attributable to NP-NP aggregation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectrophotometric Determination of 4-Hydroxy-2-mercapto-6-methylpyrimidine Based on Aggregation of Colloidal Gold Nanoparticles

We report herein the development of a highly sensitive colorimetric method for the detection of 4-hydroxy-2-mercapto-6-methylpyrimidine (MTU) which acts as an anti-thyroid drug utilizing citrate capped gold nanoparticles (Au-NPs). This thiol-containing molecule exhibits intriguing affinity with Au-NPs. The reactivity involves the displacement of the citrate shell by the thiolate shell followed ...

متن کامل

Adsorption of a Protein Monolayer via Hydrophobic Interactions Prevents Nanoparticle Aggregation under Harsh Environmental Conditions.

We find that citrate-stabilized gold nanoparticles aggregate and precipitate in saline solutions below the NaCl concentration of many bodily fluids and blood plasma. Our experiments indicate that this is due to complexation of the citrate anions with Na+ cations in solution. A dramatically enhanced colloidal stability is achieved when bovine serum albumin is adsorbed to the gold nanoparticle su...

متن کامل

Photocatalytic removal of ethylbenzene from air flow using ZnO nanoparticles immobilized on modified natural zeolite

Introduction: Ethylbenzene is a volatile organic compound used in many industries, including oil and gas, oil colored and insecticides. Due to the toxic effects of this chemical substance, control and elimination of this vapor is necessary. Photocatalytic degradation is a possible method to remove organic compounds from air. This study was performed to determine the efficiency of photocatalytic...

متن کامل

‘Reversed Turkevich’ method for tuning the size of Gold nanoparticles: evaluation the effect of concentration and temperature

In this study the influence of dicarboxy acetone (DCA), as an oxidation product of sodium citrate, was evaluated by ‘reversed Turkevich’ method in this study. Gold nanoparticles (GNPs) were synthesized systematically at various sodium citrate to HAuCl4 molar ratio and temperature. TheseThe GNPs were characterized by UV-vis spectroscopy, DLS and TEM techniques. The results showed that by reversi...

متن کامل

Citrate-Coated Silver Nanoparticles Interactions with Effluent Organic Matter: Influence of Capping Agent and Solution Conditions.

Fate and transport studies of silver nanoparticles (AgNPs) discharged from urban wastewaters containing effluent organic matter (EfOM) into natural waters represent a key knowledge gap. In this study, EfOM interfacial interactions with AgNPs, and their aggregation kinetics were investigated by atomic force microscopy (AFM) and time-resolved dynamic light scattering (TR-DLS), respectively. Two w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of environmental monitoring : JEM

دوره 14 7  شماره 

صفحات  -

تاریخ انتشار 2012